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ABSTRACT
Although procedural generation is popular among game develop-

ers, academic research on the topic has primarily focused on new

applications, with some research into empirical analysis. In this

paper we relate theoretical work in information theory to the gen-

eration of content for games. We prove that there is a relationship

between the Kolomogorov complexity of the most complex artifact

a generator can produce, and the size of that generator’s possibility

space. In doing so, we identify the limiting relationship between

the knowledge encoded in a generator, the density of its output

space, and the intricacy of the artifacts it produces. We relate our

result to the experience of expert procedural generator designers,

and illustrate it with some examples.

CCS CONCEPTS
• Software and its engineering → Interactive games; • Mathe-
matics of computing→ Information theory.
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1 INTRODUCTION
Procedural content generation is a well-established part of the mod-

ern game developer’s toolkit. The Game Developer’s Conference,

the largest event in the games industry, has hosted over 50 talks

in the last decade about procedural generation, from small-scale

independent speakers to large AAA companies, covering disciplines

from programming to art to writing. Correspondingly, procedural

generation has been an increasingly hot topic among game AI

researchers in the last two decades. The Procedural Generation
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Workshop at FDG, now in its twelfth year, is one of the longest-

running workshops in the field of game AI, and dedicated paper

tracks at conferences are a regular occurrence.

Despite the huge importance of content generation, and the

wealth of time invested into developing practical techniques, the

analysis of procedural generators is a relatively underdeveloped

area of study. A few notable techniques have emerged over the last

two decades of research [7, 8], as well as studies of efficacy [4, 9],

but many of the techniques used by game researchers have changed

little in that time. As a result, a lot of procedural generation work

is done by ‘feel’, with postmortems shared at events such as the

Roguelike Celebration
1
that indicate a successful approach that

others can attempt to replicate or build upon.

Attempts to abstract and generalise knowledge about game de-

velopment are important, because they allow us to connect the dots

between disparate games, designers and techniques. They can also

help provide support and evidence, or even proof, of ‘folk myths’

about AI, or phenomena that are reported by many game develop-

ers but have never been concretised. Understanding where these

feelings come from, and relating them to established ideas from

computer science, leads to new discoveries and a deeper under-

standing of the craft.

In this paper we relate Kolmogorov Complexity, a concept from
information theory, to the generation of content for games. We

prove that there is a fixed relationship between the Kolomogorov

complexity of the most complex artifact a generator can produce,

and the size of that generator’s possibility space. In doing so, we

identify the limiting relationship between the knowledge encoded

in a generator, the density of its output space, and the intricacy

of the artifacts it produces. We relate our result to the folklore of

procedural generators, and illustrate it with examples.

2 BACKGROUND
2.1 Kolmogorov Complexity
Information theory is the study of how information is commu-

nicated and represented, the origins of which predate the devel-

opment of programming languages. Information theory is often

used to analyse programs and computation, particularly as part of

complexity theory and computability analysis.

In [3] the author introduces the notion of algorithmic complexity,
later named Kolmogorov complexity. The Kolmogorov complexity

of an object is defined as the length of the shortest program that

will produce that object when executed. For example, a string of

one thousand zeros can be written as follows:

for i in range ( 0 , 1 0 0 0 ) :

1
https://www.roguelike.club/
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print ( 0 )

However, a string containing the first one thousand prime numbers

would require a more complicated program to compute it. In gen-

eral, the less compressible an object is, the higher its Kolmogorov

complexity, as it requires more specific code to describe each part

of the object.

2.2 Theory of Generative Systems
The analysis of generative systems is a subject of study within

game AI and far beyond in mathematical spaces. Fields relating to

modelling, forecasting and probability all have some relationship to

predicting the behaviour of complex or nondeterministic systems.

In game AI more specifically, researchers have developed tech-

niques for understanding the behaviour of procedural generators,

most often for the purpose of building tools that can analyse and

visualise this information for designers and developers. A promi-

nent early example of this is Expressive Range Analysis (ERA) by

Smith and Whitehead, in which they use repeated sampling of a

content generator, and then plot metric data for sampled content

on a histogram [7]. This provides a way to visually understand the

behaviour of the generator, provided metrics are chosen with care.

Summerville builds on this work in [8] and suggests ways this

can be expanded to use richer visualisations, particularly for the

field of PCGML which requires a different approach to assessment.

Cook et al also expand on ERAs in [2], building an assistive de-

sign tool that performs randomised analyses to show meta-level

exploration of the design space of the generator itself. Their tool,

Danesh, also provides several intelligent methods for tuning and

changing a generator that account for the uneven fitness landscape

and nonlinear behaviour of parameters to generative systems.

The choice of metrics used in assessing content is also the subject

of study, as while analytical techniques are often general, they rely

on specific metrics to provide domain-specific context that enables

a deeper understanding of the quality of a particular generator’s

output. This is a major weakness of content generation analysis,

as writing useful metrics is a difficult skill that requires a deep

understanding of the application domain. Analyses of these metrics

show a mixed success in predicting quality, and even for genre-

specific metrics their general-purpose usability is not clear [4].

All of the approaches listed in this section are empirical in nature,

and require experimental analysis of output from the generator.

These provide useful, practical techniques for developers to apply

to their systems. In this paper, we attempt to complement this body

of work by providing a result that is grounded in the underlying

theory of generative systems. Expanding this work is important in

providing a deeper understanding of how all generative programs

function.

2.3 Folk Wisdom and PCG
Perhaps in part because of its status as a technique associated with

experimentation and interdisciplinary work, procedural generation

has given rise to a strong community of practitioners that span

academic research, the arts, the games industry and more besides.

Over the last ten years many unofficial and informal events and

communities have sprung up dedicated to generative software, es-

pecially in games, such as PROCJAM
2
and Everything Procedural

3
,

as well as events with a strong focus on PCG such as the Roguelike

Celebration. This sharing of practices and experiences with an id-

iosyncratic technology has given rise to a kind of folk wisdom about

procedural generation, that combines humour, learned experiences

and internalised knowledge.

One well-known example of this is The Ten Thousands Bowls of
Oatmeal Problem, a term coined by Kate Compton and now one of

the best-known idioms among procedural generation practitioners.

In this analogy, Compton likens procedurally generated content to

bowls of oatmeal, and uses this to highlight the meaninglessness of

appeals to variety or unpredictability which often accompany sales

pitches related to procedural generation. Every bowl of oatmeal is

unique, Compton explains, but that does not make them interest-

ing or valuable. Designers use this to understand that procedural

generation alone does not guarantee variety or interest, and that

systems must be carefully designed to use generative methods as

an expressive tool, rather than a solution in and of itself. One can

imagine a similar sentiment being expressed in a less engaging and

memorable way, particularly in the context of academic research

which is often criticised for being overly formal. The elegance of

the metaphor is surely crucial in enabling this message to be re-

membered and shared so widely.

Procedural generation practitioners also engage deeply with

the frustrations and difficulties of working with the technology.

One widely-shared tweet by game developer Orteil explains that

“thanks to procedural generation, I can produce twice the content

in double the time”
4
. This tongue-in-cheek statement tells us a lot

about the procedural generation community: that there is a sense

of self-awareness; that there is an understanding of the myths that

people tell about the technology; and that, despite this, the tweet

author still enjoys working with PCG.

One of our goals in this paper is to connect formal theoretical

ideas about generative systems and programming to the intuition

and internalised knowledge of procedural generation practitioners.

In doing so, we hope we can strengthen these ideas and help the

procedural generation community build on top of them, as well as

encouraging further academic research in the area.

3 PROOF: COMPLEXITY AND LIMITS OF
GENERATIVE SYSTEMS

In this section we present a proof which relates the Kolmogorov

complexity of generated artefacts, the algorithm that generates

them, and the possibility space defined by that algorithm. We first

define the terms used in our proof, state our theorem in those terms,

and then describe the proof itself.

Definition 3.1. A program is a finite binary string,𝑝 ∈ {0, 1}𝑛 for 𝑛 ∈
N. An input table is a finite binary string, 𝑖 ∈ {0, 1}𝑛 for 𝑛 ∈ N. An
artefact is a finite binary string, 𝑎 ∈ {0, 1}𝑛 for 𝑛 ∈ N.

Definition 3.2. |𝑝 | denotes the length of the finite binary string

𝑝 . #𝑆 denotes the number of elements contained by the finite set 𝑆 .

2
https://www.procjam.com/

3
https://everythingprocedural.com/

4
https://tinyurl.com/orteilpcg22
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Definition 3.3. A generator, 𝐺 , is a deterministic program, mod-

elled as a finite function that maps an input table 𝑖 , to an artefact,

𝑎. The possibility space of𝐺 (i.e. the set of all artefacts output by𝐺)

is denoted by 𝜋 (𝐺).
𝜋 (𝐺) = {𝐺 (𝑖) : 𝑖 ∈ {0, 1}𝑛, 𝑛 ∈ N}

Definition 3.4. A program is terminating if it terminates and

returns an output in finite time.

A generator 𝐺 is ideal if it is terminating and it satisfies the

following properties:

• Fixed Input Size: 𝐺 accepts as input only binary strings of a

fixed length, denoted by 𝑖𝑛𝑝𝑢𝑡𝐺 .

• Injectivity: 𝐺 is an injective function (that is, every input

of length 𝑖𝑛𝑝𝑢𝑡𝐺 is associated with exactly one output, and

distinct inputs are associated with distinct outputs).

Note that most procedural generators are terminating, especially

those used in the production of game content (either online or

offline). However, this is not the case for the other two properties

of ideal generators, Fixed Input Size and Injectivity. Nevertheless,
any non-ideal generator can be straightforwardly transformed into

an ideal generator. We describe this transformation in section A as

an appendix.

From the latter two properties of an ideal generator in Definition

3.4, we can observe that the size of a generator’s possibility space

is directly related to the fixed size of its inputs:

#𝜋 (𝐺) = 2
𝑖𝑛𝑝𝑢𝑡𝐺

(1)

This follows from the fact that every input must be associated

with a unique output (by injectivity) and that 𝐺 must accept every
binary string of length 𝑖𝑛𝑝𝑢𝑡𝐺 and no other strings.

Definition 3.5. Kolmogorov complexity, 𝐾 , is a function that takes

as input an artefact, 𝑎, and as output provides the length of the

shortest combined program and input, 𝑝 and 𝑖 respectively, such

that 𝑝 (𝑖) = 𝑎.
𝐾 (𝑎) = min

𝑝,𝑖:𝑝 (𝑖 )=𝑎
|𝑝 | + |𝑖 | (2)

𝐾∗
is a function which takes as input a generator,𝐺 , and returns

the largest Kolmogorov complexity of any artefact in 𝜋 (𝐺). That is:
𝐾∗ (𝐺) = 𝑀𝑎𝑥{𝐾 (𝑎) : 𝑎 ∈ 𝜋 (𝐺)} (3)

In the following theorem, we place a lower and upper bound on

𝐾∗ (𝐺) given an ideal generator 𝐺 . Later, we demonstrate why this

result is relevant to modern procedural generation theory, and give

examples of its application.

Theorem 3.6. An ideal generator 𝐺 always satisfies the following
inequality:

|𝐺 | + 𝑙𝑜𝑔2 (#𝜋 (𝐺)) ≥ 𝐾∗ (𝐺) ≥ 𝑙𝑜𝑔2 (#𝜋 (𝐺))

Proof. Pick an arbitrary generator 𝐺 , such that 𝐺 is ideal. We

prove each inequality separately.

Upper bound: |𝐺 | + 𝑙𝑜𝑔2 (#𝜋 (𝐺)) ≥ 𝐾∗ (𝐺).
By the definition of Kolmogorov complexity:

∃𝑖 ∈ {0, 1}𝑖𝑛𝑝𝑢𝑡𝐺 . |𝐺 | + |𝑖 | ≥ 𝐾∗ (𝐺) (4)

Since 𝐺 is an ideal generator, |𝑖 | is the same for all inputs in the

domain of 𝐺 , namely 𝑖𝑛𝑝𝑢𝑡𝐺 . Therefore:

|𝐺 | + 𝑖𝑛𝑝𝑢𝑡𝐺 ≥ 𝐾∗ (𝐺) (5)

From 1 it follows that:

𝑖𝑛𝑝𝑢𝑡𝐺 = 𝑙𝑜𝑔2 (#𝜋 (𝐺)) (6)

From 5 and 6, we can derive |𝐺 | + 𝑙𝑜𝑔2 (#𝜋 (𝐺)) ≥ 𝐾∗ (𝐺) as
required.

Lower bound: 𝐾∗ (𝐺) ≥ 𝑙𝑜𝑔2 (#𝜋 (𝐺)).
By the definition of Kolmogorov complexity, for each artefact 𝑎

in 𝜋 (𝐺) there exists at least one deterministic program 𝑝𝑎 whose

output is 𝑎, such that |𝑝𝑎 | = 𝐾 (𝑎). Let 𝑃𝑎 be the nonempty set of

all such programs. By the definition of 𝑃𝑎 , we know there are at

least as many programs in 𝑃𝑎 as there are artefacts in 𝜋 (𝐺), i.e.
|𝑝𝑎 | ≥ #𝜋 (𝐺). As such, we have:

𝑙𝑜𝑔2 ( |𝑝𝑎 |) ≥ 𝑙𝑜𝑔2 (#𝜋 (𝐺)) (7)

𝑃𝑎 is a non-empty set of finite binary strings. By the pigeonhole

principle, there exists at least one 𝑝 ∈ 𝑃𝑎 such that:

|𝑝 | ≥ 𝑙𝑜𝑔2 ( |𝑝𝑎 |) (8)

From 7 and 8, and the commutativity of the ≥ operator, we derive:

|𝑝 | ≥ 𝑙𝑜𝑔2 (#𝜋 (𝐺)) (9)

From the definition of 𝐾∗
in 3, we obtain:

𝐾∗ (𝐺) = 𝑀𝑎𝑥{|𝑝 | : 𝑎 ∈ 𝜋 (𝐺), 𝑝 ∈ 𝑃𝑎} (10)

From 9 and 10, it follows that:

𝐾∗ (𝐺) ≥ 𝑙𝑜𝑔2 (#𝜋 (𝐺)) (11)

□

4 DISCUSSION AND IMPLICATIONS
In the previous section we outlined a proof that used Kolmogorov

complexity to relate different properties of a generative system to

one another, namely the size of its possibility space (𝑙𝑜𝑔2 (#𝜋 (𝐺))),
the Kolmogorov complexity of its most complex artefact (𝐾∗ (𝐺)),
and the length of the generator’s code (|𝐺 |). In this section we

contextualise this result by linking it to aspects of procedural gener-

ation practice, and discussing implications of the result for research

into PCG.

4.1 Tradeoffs in Generative Design
By relating the elements of the proof above to more plain-language,

everyday aspects of designing procedural generators, we can begin

to link the results of the proof to an intuitive understanding of the

limitations of generative systems.

4.1.1 Encoded Knowledge. The design of procedural generators

often involves research, practice and experimentation. In order to

design a system which procedurally generates poetry, for example,

a generative systems designer might read writing about the theory

and techniques poets use, try writing poems themselves, or read a

lot of poems in a genre or style they are interested in replicating.

Such intensive research is not always required – a designer might

decide to base their work on the knowledge of poetry they already

have, or might be an experienced poet themselves and already have

many years of practice. Even in the case where research or practice
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is not applicable, for example in using procedural generation as a

form of compression or randomisation, care and planning is still

required to think about the distribution, function and goals of the

generative system.

In writing a procedural generator, the designer is embedding

their knowledge about the generative problem in question into the

code they are writing. Themore knowledge they wish to embed into

the system, the more code they need to write. For example: code

to handle edge cases that they wish to exclude from the possibility

space; code to describe templates for particular forms or structures;

or code to describe particular distributions of noise or randomness

to provide the right textural basis. We can think of the length of

the generator’s code (|𝐺 |) as an analogue for the design knowledge

that has been encoded into the generator. Note that |𝐺 | represents
minimal code, which impacts the generator’s functionality, rather

than measuring any code at all. Thus, adding empty statements

does not increase |𝐺 |, but adding code which affects how content is

generated (thus affecting its Kolmogorov complexity) does count.

4.1.2 Scale. Marketing for games which prominently feature pro-

cedural generation may also mention the scale or size of the pos-

sibility space, such as Borderlands 3’s marketing campaign which

highlighted that the game contained ‘over one billion guns’
5
. Many

of the early arguments for using procedural generation in game

design stemmed from their supposed ability to create ‘replayability’

or ‘endless’ amounts of content for players to consume. While this

is certainly true for some uses of the technique, scale is not always

needed, nor does it always guarantee quality or fitness.

In our proof, the size of the possibility space (𝑙𝑜𝑔2 (#𝜋 (𝐺))) cap-
tures the number of potential outputs the generator can create. A

small number of potential outputs might point to a lack of variety

in the generator, which might mean the experience of the content

suffers from repetition. Alternatively, it might be that the generator

is designed to create a specific set of outputs (such as the use of

PCG-as-compression in Elite [1]), or the generator is intentionally

kept small so the player can learn or predict its behaviour. Equally,

a large number of potential outputs might indicate a bland space

of very similar outputs (the bowls of oatmeal problem referenced

in section 2.3). Alternatively, it might be used to convey vastness

and repetition (as suggested by Emily Short [6]), or supported by

enough encoded knowledge to maintain diversity even at scale.

We discuss the Oatmeal problem, and its relation to our proof, in

greater detail in the next section.

4.1.3 Pattern Density. Players naturally learn to identify patterns

in game content over time. This is not exclusive to procedurally

generated content; players often complain about the reuse of assets

in multiple areas of a game, for example, or identify the look or feel

of a particular game engine. Due to its algorithmic nature, how-

ever, procedurally generated content is more susceptible to pattern

identification in this way. Generated content might be described as

‘repetitive’ if it is too easy to notice patterns.

There are many approaches to delaying the player’s ability to

learn patterns. One is to simply add more pattern density – to

add more detail and more patterns to the generative processes, so

it becomes harder to remember the last time a particular design

5
https://www.youtube.com/watch?v=bFLhcoFAJMQ

𝑙𝑜𝑔2 (#𝜋 (𝐺))

|𝐺 |

𝐾∗ (𝐺)

𝐾∗ (𝐺)

𝑄

𝑃

Figure 1: A plot of the relationship between |𝐺 |, the length
of the generator, and 𝑙𝑜𝑔2 (#𝜋 (𝐺)), the size of the possibil-
ity space. The intersections marked 𝐾∗ (𝐺) represent the
Kolmogorov Complexity of the most complex artifact in
𝜋 (𝐺).

𝑙𝑜𝑔2 (#𝜋 (𝐺))

|𝐺 |

𝐾∗ (𝐹12)

𝐾∗ (𝐹12)

𝐹12

𝐾∗ (𝐹6)

𝐾∗ (𝐹6)

𝐹6

Figure 2: A replot of Figure 1 with marks indicating the
two versions of the Flower Generator, 𝐹12 and 𝐹6.

element was encounter. Another is to add confounding elements

that blur the edges between patterns. This approach is used by

Spelunky to blend its discrete templates with more continuous

randomness.

Kolmogorov complexity expresses how much program code is

required to describe a particular object. The more complex, noisy,

detailed or random an artefact is, the more code is required to

describe it. Themost complex artefact in a possibility space (denoted

𝐾∗ (𝐺) in our proof) represents the ceiling of this property for a

particular generator. The higher this value, the more complexity a

generator is capable of producing.

4.2 Relationship to the Theorem
Reconsidering the results of the proof in light of these definitions,

we can see that there is a relationship between the amount of

information encoded within the generative algorithm, the number

of things the algorithm can generate, and the complexity of patterns

and details within its outputs. Because these concepts are all linked
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in our theorem, changing any one of them will affect the value of

the others.

To visualise this, in Figure 1 we plot the two inequalities in our

theorem for a generator 𝐺 . By our theorem, the values of |𝐺 | and
𝑙𝑜𝑔2 (#𝜋 (𝐺)) are bounded by these lines, meaning that𝐺 will always

be plotted in the unshaded area on the graph. A consequence of this

is that attempting to change one of these values may require other

values to be changed as well. For example, consider the generator

𝑃 in the plot. In order to decrease the length of its code (|𝐺 |) we
must either reduce 𝐾∗ (𝐺) or increase 𝑙𝑜𝑔2 (#𝜋 (𝐺)), because of the
bounds expressed by our theorem. In the parlance of this section,

we cannot remove knowledge from the generator without either

reducing the pattern density of what it can generate, or increasing

the scale of its output. Similarly for 𝑄 , increasing 𝑙𝑜𝑔2 (#𝜋 (𝐺))
requires we increase 𝐾∗ (𝐺) or, in other terms, in order to increase

the scale of the generator’s output, wemust also increase the pattern

density of what it creates. Such invariant relationships between

these properties of a procedural generator are explored in greater

depth with examples in the following section.

5 EXAMPLES
5.1 Flower Generator
Tea Garden is a forthcoming independently-developed videogame

about exploring dream worlds. In the game, the player can pick

flowers to brew tea, which when drunk induces dreams of gardens

full of flowers. The player can pick a single flower to take back out

of the dream and into the real world, which can then be used to

brew more tea. The game extensively uses procedural generation,

in particular to generate both the layout of the dream gardens, and

the designs of the flowers themselves. Figure 3 shows a screenshot

from the game.

Consider a procedural content generator that produces flower

designs for Tea Garden. The output of the generator is always a two-

dimensional array of pixel colours, measuring 12x12. We refer to

this generator as 𝐹12, with the numeric subscript defining the width

and height of the flowers in pixels. Now consider a modification of

this generator, 𝐹6, which is identical save for the size of the flowers,

now measuring 6x6. The length of the generator’s code has not

changed, since we have simply changed one variable describing

output size. However, the size of the generator’s possibility space

has now decreased, because there are fewer flowers that can be

represented in 6x6 pixels than there are 12x12. Figure 2 shows these

two generators on the same plot from Figure 1. Note how 𝐹6 has

moved down the x-axis, indicating a smaller possibility space, but

has the same spot on the y-axis, as the length of the code has not

changed.

We can see from this that a consequence of this change is that the

most complex artifact the generator can produce is also reduced.

The overall effect of this is that we have reduced the size and

complexity of the generator’s output, without reducing the amount

of knowledge encoded in it. This focuses the generator around a

smaller set of outputs. Note that this does not necessarily result

in a ‘better’ generator, but it does result in a generator whose

output is slightly easier to understand and describe, because it

contains less information and variation within it. In this case, Tea
Garden’s designer preferred to replace 𝐹12 with 𝐹6 for their final

Figure 3: A development screenshot ofTeaGarden. Groups
of generated flower sprites can be found at the top right
and top left of the map, as well as near the river at the
bottom.

Figure 4: Output samples from the 12x12 (left) and 6x6
(right) flower sprite generators, produced during the de-
velopment of Tea Garden. The designer chose to only keep
6x6 artefacts in the final game.

design, as the reduced complexity of the generated sprites better

suited the game’s low resolution pixelart aesthetic. Figure 4 shows

a comparison between 𝐹12 and 𝐹6’s outputs.

5.2 Minecraft
Minecraft is a 3D survival crafting game, and one of the most popu-

lar games to prominently feature procedural generation. Minecraft
is set inside procedurally generated worlds that are far larger than

any player could ever explore, using an algorithm that has been

carefully iterated upon over many years to create dramatic, inter-

esting and beautiful worlds that also serve important gameplay

functions such as providing challenge, inspiration and surprise.

The history of the Minecraft world generator can be seen from its

patch notes and community records [5]. We refer to each version

of the generator here as𝑀𝑛 where 𝑛 is the major version number

of Minecraft associated with it.

Between𝑀1.7 and𝑀1.8,Minecraft designers added villages to its
world generator. During the generation process, the generator will

mark an area to have a village placed in it, and then use templates

for houses, farms and other structures to construct a village. Figure

5 shows𝑀1.7 and𝑀1.8 on the same plot as Figure 1.
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𝑙𝑜𝑔2 (#𝜋 (𝐺))

|𝐺 |

𝐾∗ (𝑀1.7)

𝐾∗ (𝑀1.7)

𝑀1.7

𝐾∗ (𝑀1.8)

𝐾∗ (𝑀1.8)

𝑀1.8

Figure 5: A plot showing the change between two versions
of the Minecraft world generator,𝑀1.7 and𝑀1.8.

𝑙𝑜𝑔2 (#𝜋 (𝐺))

|𝐺 |

𝐾∗ (𝐺1)

𝐾∗ (𝐺1)

𝐺1

𝐾∗ (𝐺2)

𝐾∗ (𝐺2)

𝐺2

Figure 6: A plot showing the change in a hypothetical
generator, leading to the generation of ‘oatmeal’.

Since most of the village’s blocks are put in space that would

have been empty otherwise, we consider this feature is evidence

that Minecraft’s designers desired to augment the complexity of

its generated worlds (𝐾∗ (𝐺)). As both versions of Minecraft used a

64-bit seed leading to a maximum of 2
64

generated worlds, the two

generators have the same scale (𝑙𝑜𝑔2 (#𝜋 (𝐺))), putting them on the

same spot on the x-axis. The theorem predicts that if the increase

of complexity between𝑀1.7 and𝑀1.8 is high enough, the length of

Minecraft’s source code will have to increase too.

In that likely case, Minecraft’s designers would have increased

the complexity of their worlds in exchange for encoding more de-

signer knowledge in its world generator. The requirement to invest

skills and resources in a generator to raise the complexity of its

artefacts is supported by the existence of PCG design competitions

dedicated to generating villages in Minecraft, like the GDMC AI

Settlement Generation Challenge.

5.3 The Cost of Oatmeal
In section 2.3 we described the ten thousand bowls of oatmeal prob-
lem, where a large quantity of content is produced, but the quality

and variety of the content is so low that the quantity becomes a

problem rather than a boon. In this example we explore how this

can happen unintentionally when attempting to engineer a more

complex generator.

Suppose we have developed a generator, 𝐺1 in Figure 6, and we

wish to make its output more complex – that is, we wish to increase

the pattern density, 𝐾∗ (𝐺1). Increasing 𝐾∗
will eventually require

us to change either the length of the program (|𝐺 |) or the size of
the possibility space (𝑙𝑜𝑔2 (#𝜋 (𝐺))), since our theorem guarantees

that the inequality |𝐺 | + 𝑙𝑜𝑔2 (#𝜋 (𝐺)) ≥ 𝐾∗ (𝐺) holds for any ideal

generator 𝐺 . As a developer, this offers us two solutions. The first

is to add to the length of the program, adding more encoded knowl-

edge into the generator. However, this solution is both costly and

time-consuming. The second solution is to increase the size of the

possibility space and scale up the generator, for example by ran-

domly combining subcomponents of our artefacts. This is a cheap,

and therefore appealing, solution, and results in a generator such as

𝐺2 in Figure 6. By linearly increasing 𝐾∗
in this way however, we

are exponentially increasing the size of the possibility space without

adding any new encoded knowledge to control or shape output.

This is highly likely to result in a large quantity of noisy, perceptu-

ally similar, unremarkable content, otherwise known as oatmeal.
We claim that a common reason for the oatmeal phenomenon is

that oatmeal is cheap, as it does not require the costly encoding of

knowledge in order to increase the pattern density of a generator.

6 FUTUREWORK
This paper presents a first step in relating ideas from complexity

theory to generative systems. There are many ways in which this

work can be extended to increase the topics it covers, or to explore

new applications. For example, Kolmogorov Complexity was not

designed with neural networks in mind, but the burgeoning field of

Procedural Content Generation via Machine Learning makes this

an important area of the field to consider [10]. We aim to investigate

how Kolmogorov Complexity can be used to express constraints

on PCGML systems in the future, too.

7 CONCLUSIONS
In this paper we introduced the concept of Kolmogorov Complexity

from information theory and related it to the study of procedural

content generation. Specifically, we provided a proof of the rela-

tionship between the length of a generator’s source code, the size

of its possibility space, and the highest Komogorov Complexity the

generator is capable of producing. We then argued that this con-

veys a well-understood tradeoff in procedural generation practice,

between the scale of a procedural generator’s outputs, how dense

or noisy the space is, and how detailed its generative algorithm is.

We then used several real-world examples to show how this idea

can be applied to generative systems.
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A TRANSFORMING NON-IDEAL
GENERATORS

Let 𝐺 be a non-ideal generator which is terminable, but does not

does not have a fixed input size (but admits a finite set of inputs

and does not admit infinite inputs) and is not injective. Let 𝐼 be the

domain of 𝐺 (i.e. its set of inputs) and let𝑚 be the length of the

longest 𝑖 ∈ 𝐼 .
Let us define 𝑒𝑛𝑐𝑚 as a function that takes as input a binary

string, 𝑖 ∈ 𝐼 , and returns |𝑖 | expressed as a binary string, denoted

by 𝑏𝑖 , padded with leading zeroes if |𝑏𝑖 | is less than ⌈𝑙𝑜𝑔2 (𝑚)⌉,
concatenated with 𝑖 , padded with leading zeroes if |𝑖 | is less than𝑚.

Let 𝐼 ′′ = {𝑒𝑛𝑐𝑚 (𝑖) : 𝑖 ∈ 𝐼 }; note that 𝑒𝑛𝑐𝑚 (𝑖) is an injective function
in that it transforms each 𝑖 ∈ 𝐼 into a unique string 𝑖′′ ∈ 𝐼 ′′ of length
𝑚 + ⌈𝑙𝑜𝑔2 (𝑚)⌉.

Let𝐺 ′′
be a generatorwith domain 𝐼 ′′ such that𝐺 ′′ (𝑖) = 𝐺 (𝑒𝑛𝑐−1𝑚 (𝑖)),

for all 𝑖 ∈ 𝐼 ′′ (as 𝑒𝑛𝑐𝑚 is injective, 𝑒𝑛𝑐−1𝑚 is well-defined). The gen-

erator𝐺 ′′
then satisfies the fixed input size property as every string

in 𝐼 ′′ is of fixed length𝑚 + ⌈𝑙𝑜𝑔2 (𝑚)⌉ and the domain of 𝐺 ′′
is 𝐼 ′′.

Let𝐺 ′
be a generator with domain 𝐼 ′′ such that𝐺 ′ (𝑖) = 𝐺 ′′ (𝑖)+𝑖 ,

for all 𝑖 ∈ 𝐼 ′′. That is, the output of 𝐺 ′
given input 𝑖 is the output

of 𝐺 ′′
given input 𝑖 , concatenated with 𝑖 itself. Note that 𝐺 ′

is

an injective function: for any two inputs 𝑖, 𝑗 ∈ 𝐼 ′′, if 𝑖 ≠ 𝑗 , then

𝐺 ′ (𝑖) = 𝐺 ′′ (𝑖) + 𝑖 and 𝐺 ′ ( 𝑗) = 𝐺 ′′ ( 𝑗) + 𝑗 , and thus 𝐺 ′ (𝑖) ≠ 𝐺 ′ ( 𝑗).

Moreover, as the domain of𝐺 ′
is 𝐼 ′′, it also satisfies the fixed input

size. As such, 𝐺 ′
is an ideal generator.
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